Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38645239

RESUMO

A crucial step in early embryogenesis is the establishment of spatial patterns of signaling activity. Tools to perturb morphogen signals with high resolution in space and time can help reveal how embryonic cells decode these signals to make appropriate fate decisions. Here, we present new optogenetic reagents and an experimental pipeline for creating designer Nodal signaling patterns in live zebrafish embryos. Nodal receptors were fused to the light-sensitive heterodimerizing pair Cry2/CIB1N, and the Type II receptor was sequestered to the cytosol. The improved optoNodal2 reagents eliminate dark activity and improve response kinetics, without sacrificing dynamic range. We adapted an ultra-widefield microscopy platform for parallel light patterning in up to 36 embryos and demonstrated precise spatial control over Nodal signaling activity and downstream gene expression. Patterned Nodal activation drove precisely controlled internalization of endodermal precursors. Further, we used patterned illumination to generate synthetic signaling patterns in Nodal signaling mutants, rescuing several characteristic developmental defects. This study establishes an experimental toolkit for systematic exploration of Nodal signaling patterns in live embryos.

2.
Methods Cell Biol ; 182: 1-20, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38359973

RESUMO

Chromothripsis describes the catastrophic fragmentation of individual chromosomes followed by its haphazard reassembly into a derivative chromosome harboring complex rearrangements. This process can be initiated by mitotic cell division errors when one or more chromosomes aberrantly mis-segregate into micronuclei and acquire extensive DNA damage. Approaches to induce the formation of micronuclei encapsulating random chromosomes have been used; however, the eventual reincorporation of the micronucleated chromosome into daughter cell nuclei poses a challenge in tracking the chromosome for multiple cell cycles. Here we outline an approach to genetically engineer stable human cell lines capable of efficient chromosome-specific micronuclei induction. This strategy, which targets the CENP-B-deficient Y chromosome centromere for inactivation, allows the stepwise process of chromothripsis to be experimentally recapitulated, including the mechanisms and timing of chromosome fragmentation. Lastly, we describe the integration of a selection marker onto the micronucleated Y chromosome that enables the diverse genomic rearrangement landscape arising from micronuclei formation to be interrogated.


Assuntos
Cromotripsia , Humanos , Centrômero/genética , Divisão Celular , Núcleo Celular , Linhagem Celular
3.
bioRxiv ; 2023 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-37609143

RESUMO

Errors in mitosis can generate micronuclei that entrap mis-segregated chromosomes, which are susceptible to catastrophic fragmentation through a process termed chromothripsis. The reassembly of fragmented chromosomes by error-prone DNA double-strand break (DSB) repair generates a spectrum of simple and complex genomic rearrangements that are associated with human cancers and disorders. How specific DSB repair pathways recognize and process these lesions remains poorly understood. Here we used CRISPR/Cas9 to systematically inactivate distinct DSB processing or repair pathways and interrogated the rearrangement landscape of fragmented chromosomes from micronuclei. Deletion of canonical non-homologous end joining (NHEJ) components, including DNA-PKcs, LIG4, and XLF, substantially reduced the formation of complex rearrangements and shifted the rearrangement landscape toward simple alterations without the characteristic patterns of cancer-associated chromothripsis. Following reincorporation into the nucleus, fragmented chromosomes localize within micronuclei bodies (MN bodies) and undergo successful ligation by NHEJ within a single cell cycle. In the absence of NHEJ, chromosome fragments were rarely engaged by polymerase theta-mediated alternative end-joining or recombination-based mechanisms, resulting in delayed repair kinetics and persistent 53BP1-labeled MN bodies in the interphase nucleus. Prolonged DNA damage signaling from unrepaired fragments ultimately triggered cell cycle arrest. Thus, we provide evidence supporting NHEJ as the exclusive DSB repair pathway generating complex rearrangements following chromothripsis from mitotic errors.

4.
Nature ; 618(7967): 1041-1048, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37165191

RESUMO

Complex genome rearrangements can be generated by the catastrophic pulverization of missegregated chromosomes trapped within micronuclei through a process known as chromothripsis1-5. As each chromosome contains a single centromere, it remains unclear how acentric fragments derived from shattered chromosomes are inherited between daughter cells during mitosis6. Here we tracked micronucleated chromosomes with live-cell imaging and show that acentric fragments cluster in close spatial proximity throughout mitosis for asymmetric inheritance by a single daughter cell. Mechanistically, the CIP2A-TOPBP1 complex prematurely associates with DNA lesions within ruptured micronuclei during interphase, which poises pulverized chromosomes for clustering upon mitotic entry. Inactivation of CIP2A-TOPBP1 caused acentric fragments to disperse throughout the mitotic cytoplasm, stochastically partition into the nucleus of both daughter cells and aberrantly misaccumulate as cytoplasmic DNA. Mitotic clustering facilitates the reassembly of acentric fragments into rearranged chromosomes lacking the extensive DNA copy-number losses that are characteristic of canonical chromothripsis. Comprehensive analysis of pan-cancer genomes revealed clusters of DNA copy-number-neutral rearrangements-termed balanced chromothripsis-across diverse tumour types resulting in the acquisition of known cancer driver events. Thus, distinct patterns of chromothripsis can be explained by the spatial clustering of pulverized chromosomes from micronuclei.


Assuntos
Cromossomos Humanos , Cromotripsia , Micronúcleos com Defeito Cromossômico , Mitose , Humanos , Centrômero , Cromossomos Humanos/genética , DNA/genética , DNA/metabolismo , Variações do Número de Cópias de DNA , Interfase , Mitose/genética , Neoplasias/genética
5.
PLoS Genet ; 15(5): e1008137, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-31091232

RESUMO

When the fungus Candida albicans proliferates in the oropharyngeal cavity during experimental oropharyngeal candidiasis (OPC), it undergoes large-scale genome changes at a much higher frequency than when it grows in vitro. Previously, we identified a specific whole chromosome amplification, trisomy of Chr6 (Chr6x3), that was highly overrepresented among strains recovered from the tongues of mice with OPC. To determine the functional significance of this trisomy, we assessed the virulence of two Chr6 trisomic strains and a Chr5 trisomic strain in the mouse model of OPC. We also analyzed the expression of virulence-associated traits in vitro. All three trisomic strains exhibited characteristics of a commensal during OPC in mice. They achieved the same oral fungal burden as the diploid progenitor strain but caused significantly less weight loss and elicited a significantly lower inflammatory host response. In vitro, all three trisomic strains had reduced capacity to adhere to and invade oral epithelial cells and increased susceptibility to neutrophil killing. Whole genome sequencing of pre- and post-infection isolates found that the trisomies were usually maintained. Most post-infection isolates also contained de novo point mutations, but these were not conserved. While in vitro growth assays did not reveal phenotypes specific to de novo point mutations, they did reveal novel phenotypes specific to each lineage. These data reveal that during OPC, clones that are trisomic for Chr5 or Chr6 are selected and they facilitate a commensal-like phenotype.


Assuntos
Candida albicans/genética , Candidíase Bucal/genética , Orofaringe/microbiologia , Animais , Candida albicans/metabolismo , Candidíase/genética , Modelos Animais de Doenças , Células Epiteliais , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Neutrófilos , Fenótipo , Trissomia/genética , Virulência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...